Machine learning-based optimal design of a phase change material integrated renewable system with on-site PV, radiative cooling and hybrid ventilations—study of modelling and application in five climatic regions
Yuekuan Zhou,
Siqian Zheng and
Guoqiang Zhang
Energy, 2020, vol. 192, issue C
Abstract:
The widespread application of advanced renewable systems with optimal design can promote the cleaner production, reduce the carbon dioxide emission and realise the renewable and sustainable development. In this study, a phase change material integrated hybrid system was demonstrated, involving with advanced energy conversions and multi-diversified energy forms, including solar-to-electricity conversion, active water-based and air-based cooling, and distributed storages. A generic optimization methodology was developed by integrating supervised machine learning and heuristic optimization algorithms. Multivariable optimizations were systematically conducted for widespread application purpose in five climatic regions in China. Results showed that, the energy performance is highly dependent on mass flow rate and inlet cooling water temperature with contribution ratios at around 90% and 7%. Furthermore, compared to Taguchi standard orthogonal array, the machine-learning based optimization can improve the annual equivalent overall output energy from 86934.36 to 90597.32 kWh (by 4.2%) in ShangHai, from 86335.35 to 92719.07 (by 7.4%) in KunMing, from 87445.1 to 91218.3 (by 4.3%) in GuangZhou, from 87278.24 to 88212.83 (by 1.1%) in HongKong, and from 87611.95 to 92376.46 (by 5.4%) in HaiKou. This study presents optimal design and operation of a renewable system in different climatic regions, which are important to realise renewable and sustainable buildings.
Keywords: Phase change materials (PCMs); Latent heat storage; Optimal design; Robust operation; Machine learning; Climate-adaptive operation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219323035
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:192:y:2020:i:c:s0360544219323035
DOI: 10.1016/j.energy.2019.116608
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().