Assessing temporal complementarity between three variable energy sources through correlation and compromise programming
Fausto A. Canales,
Jakub Jurasz,
Alexandre Beluco and
Alexander Kies
Energy, 2020, vol. 192, issue C
Abstract:
Renewable energies are deployed worldwide to mitigate climate change and push power systems towards sustainability. Nevertheless, the weather-dependent nature and variability of renewable energy sources often hinders their integration to national grids. The combination of different sources to profit from their beneficial complementarity has often been proposed as a partial solution to overcome these issues. This paper introduces a novel method for quantifying total temporal energetic complementarity between three different variable renewable sources, based on well-known mathematical techniques: correlation coefficients and compromise programming. It has the major advantage of allowing the simultaneous assessment of partial and total complementarity, as well as allowing for a linear assessment of complementarity. The method is employed to study the complementarity of wind, solar and hydropower generation on different temporal scales in a region of Poland. Results show that timescale selection has a determinant impact on the estimated value of the total temporal complementarity index.
Keywords: Energetic complementarity; Renewable energy; Hybrid power systems; Variable renewables; Compromise programming; Correlation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219323321
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:192:y:2020:i:c:s0360544219323321
DOI: 10.1016/j.energy.2019.116637
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().