Retrofitting with different building materials: Life-cycle primary energy implications
C. Piccardo,
A. Dodoo,
L. Gustavsson and
U.Y.A. Tettey
Energy, 2020, vol. 192, issue C
Abstract:
The energy retrofitting of existing buildings reduces the energy use in the operation phase but the use of additional materials influence the energy use in other life cycle phases of retrofitted buildings. In this study, we analyse the life cycle primary energy implications of different material alternatives when retrofitting an existing building to meet high energy performance levels. We design retrofitting options assuming the highest and lowest value of final energy use, respectively, for passive house standards applicable in Sweden. The retrofitting options include the thermal improvement of the building envelope. We calculate the primary energy use in the operation phase (operation primary energy), as well as in production, maintenance and end-of-life phases (non-operation primary energy). Our results show that the non-operation primary energy use can vary significantly depending on the choice of materials for thermal insulation, cladding systems and windows. Although the operation energy use decreases by 63–78%, we find that the non-operation energy for building retrofitting accounts for up to 21% of the operation energy saving, depending on the passive house performance level and the material alternative. A careful selection of building materials can reduce the non-operation primary energy by up to 40%, especially when using wood-based materials.
Keywords: Building retrofit; Passive house; Life cycle; Primary energy use; Building materials (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219323436
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:192:y:2020:i:c:s0360544219323436
DOI: 10.1016/j.energy.2019.116648
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().