EconPapers    
Economics at your fingertips  
 

Numerical research on combining flue gas recirculation sintering and fuel layered distribution sintering in the iron ore sintering process

Xiao-Hui Zhang, Peng Feng, Jia-Rui Xu, Li-Bin Feng and Shan Qing

Energy, 2020, vol. 192, issue C

Abstract: A mathematical model was established based on a porous media model and local nonequilibrium thermodynamics model. The conventional iron ore sintering (CIOS) process was simulated with this model, and the reliability of the model was verified by field testing. Based on the CIOS simulation results, and focused on maintaining the stability of the highest temperature of the sintering bed and waste heat utilization of the flue gas, flue gas recirculation sintering (FGRS) and fuel layered distribution sintering (FLDS) are proposed. Optimized iron ore sintering (OIOS) is also proposed based on the combination of FGRS and FLDS. The simulation results indicate that OIOS can increase the highest temperature of the upper part of the sintering bed and decrease that of the lower part. OIOS can increase the thickness of the sintering bed over a reasonable temperature range, making the distribution of the highest temperature in the sintering bed more reasonable and the sintering process more stable. Waste heat utilization of OIOS is increased by 1.7453 × 108 kJ/h and fuel consumption of OIOS is decreased by 2.66 t/h compared to values for CIOS. OIOS can decrease flue gas emissions, reduce the burden of the desulfurization system, and increase the recirculation rate of flue gas.

Keywords: Iron ore sintering; Flue gas recirculation; Fuel layered distribution; Numerical simulation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219323552
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:192:y:2020:i:c:s0360544219323552

DOI: 10.1016/j.energy.2019.116660

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219323552