Performance improvements in solar flat plate collectors by integrating with phase change materials and fins: A CFD modeling
Z. Badiei,
M. Eslami and
K. Jafarpur
Energy, 2020, vol. 192, issue C
Abstract:
Performance of solar flat plate collectors can be improved by using phase change materials for latent thermal energy storage. In this study, a three dimensional transient CFD model is developed to investigate a solar flat plate collector integrated with a layer of PCM. Heat transfer and fluid dynamics are simulated in each component by numerical solving of energy and momentum equations. Fins are also incorporated into the PCM and the resulting temperature distributions are analyzed during two different summer and winter days in Shiraz, Iran. Four different types of PCM with various melting temperatures are considered in this research. Results show that although the system with PCM has lower output temperatures in the morning, hot water can be supplied in a longer duration in the evening while discharging. Also, the average collector efficiency is increased from 33% to 46% in the summer day for the PCM with minimum melting temperature. In addition, incorporation of fins increases the storage capacity especially in PCMs with higher melting temperatures. However, heat dissipation into the ambient is larger in the finned system during the discharge in the afternoon and can reduce the efficiency marginally.
Keywords: Solar flat plate collector; Phase change material; CFD; Fin (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219324144
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:192:y:2020:i:c:s0360544219324144
DOI: 10.1016/j.energy.2019.116719
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().