On the effects of leakages in Sliding Rotary Vane Expanders
Fabio Fatigati,
Marco Di Bartolomeo and
Roberto Cipollone
Energy, 2020, vol. 192, issue C
Abstract:
Rotary Vane Expanders (RVE) are very suitable prime movers for ORC-based power units in on-the-road transportation sector. RVEs suffer volumetric efficiency deficits due to leakages which limit the overall expander efficiency and can vanish their intrinsic benefits with respect to the other prime movers. Making reference to a 2 kW Sliding RVE type (SRVE), the paper presents a theoretical and experimental contribution which goes deep into the effect of leakages inside the machine and aims to quantify their amount and effects on the expander performances. The results showed that the volumetric losses increase the mass flow rate aspirated by the machine if the intake pressure is kept constant. This increase favors a greater recovery from the hot source (up to 50%) but part of it bypasses the vanes, producing a volumetric loss. An interesting feature is that part of this additional mass is exchanged among vanes and this produces a beneficial effect on the indicated power (16.6% increase with respect the ideal case). The resulting knowledge further supported the effectiveness of dual intake expander technology which allows to theoretically reduce the leakages between adjacent vane up to 60–70% ensuring an improvement of expander efficiency.
Keywords: Dual-intake expanders; ICE bottoming ORC; Waste heat recovery; Volumetric losses; Volumetric expanders (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219324168
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:192:y:2020:i:c:s0360544219324168
DOI: 10.1016/j.energy.2019.116721
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().