EconPapers    
Economics at your fingertips  
 

A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost

Ran Wang, Shilei Lu and Wei Feng

Energy, 2020, vol. 192, issue C

Abstract: Due to reducing the reliance of buildings on fossil fuels, Passive House (PH) is receiving more and more attention. It is important that integrated optimization of passive performance by considering energy demand, cost and thermal comfort. This paper proposed a set three-stage multi-objective optimization method that combines redundancy analysis (RDA), Gradient Boosted Decision Trees (GBDT) and Non-dominated sorting genetic algorithm (NSGA-II) for PH design. The method has strong engineering applicability, by reducing the model complexity and improving efficiency. Among then, the GBDT algorithm was first applied to the passive performance optimization of buildings, which is used to build meta-models of building performance. Compared with the commonly used meta-model, the proposed models demonstrate superior robustness with the standard deviation at 0.048. The optimization results show that the energy-saving rate is about 88.2% and the improvement of thermal comfort is about 37.8% as compared to the base-case building. The economic analysis, the payback period were used to integrate initial investment and operating costs, the minimum payback period and uncomfortable level of Pareto frontier solution are 0.48 years and 13.1%, respectively. This study provides the architects rich and valuable information about the effects of the parameters on the different building performance.

Keywords: Passive house; Energy demand; Thermal comfort; Meta-model; NSGA-II; Cost-optimal analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219324181
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:192:y:2020:i:c:s0360544219324181

DOI: 10.1016/j.energy.2019.116723

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219324181