Study of a hybrid BIPV/T solar wall system
Lijie Xu,
Kun Luo,
Jie Ji,
Bendong Yu,
Zhaomeng Li and
Shengjuan Huang
Energy, 2020, vol. 193, issue C
Abstract:
In order to satisfy seasonal energy demand and to decrease energy consumption of the building during the whole year, this paper presents a hybrid BIPV/T solar wall system. In winter, BIPV/Air mode is adopted to provide space heating and generate electricity for the building. During rest of the year, system is conducted in BIPV/Water mode to create hot water and electricity simultaneously. Firstly, the experiments are conducted under each mode respectively. Secondly, mathematical models are established and verified by the experimental results. Thirdly, parameter analyses are introduced to evaluate performance of the system under different situations. The main results are: (1) Daily experimental electrical output and efficiency are 0.12 kWh & 7.6% in summer and 0.65 kWh & 12.5% in winter. (2) Based on experimental results, water tank temperature is over 40 °C in summer, and the average temperature of the experimental room is 18.6 °Cin winter. (3) The optimal water flow velocity in summer is proved to be 0.04 L/s by parameter study. (4) The system is able to achieve passive space cooling in summer. (5) Based on simulation analysis, the system can provide space heating efficiently in winter.
Keywords: Building integrated PV/T; BIPV/Air-heating; BIPV/Water-heating; Performance evaluation; Parameter analyses (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421932273X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:193:y:2020:i:c:s036054421932273x
DOI: 10.1016/j.energy.2019.116578
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().