Sizing of district heating systems based on smart meter data: Quantifying the aggregated domestic energy demand and demand diversity in the UK
Zhikun Wang,
Jenny Crawley,
Francis G.N. Li and
Robert Lowe
Energy, 2020, vol. 193, issue C
Abstract:
The sizing of district energy systems involves a trade-off between reliability and continuity of service, and avoidance of capital and running costs associated with oversizing. Finding the most appropriate sizing requires a thorough understanding of energy demand. However, empirical data necessary to support such an understanding is scarce, and district energy systems are typically oversized. This study uses smart meter data from the largest field trial to analyse residential energy consumption in the UK. It presents graphically the seasonal and daily variations in energy consumption patterns, the weather dependence of energy loads, and peak hourly demand during particularly cold weather conditions. It also explores the diversity effect in residential energy consumption and computes the after diversity maximum demand at different levels of aggregations. Results show that, peak hourly gas consumption was nearly seven times higher than electricity consumption during the cold spells, while diversity reduced gas and electricity maximum demand per dwelling up to 33% and 47%, respectively. This empirical quantitative analysis of energy demand and diversity can support improved design and operation of district energy, and in particular, enable reduced capital and running costs, and an improved understanding of economies of scale for district heating networks.
Keywords: District energy; Load profile; Smart meter; Demand diversity (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219324752
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:193:y:2020:i:c:s0360544219324752
DOI: 10.1016/j.energy.2019.116780
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().