Experimental study of NOx emissions in a 30 kWth pressurized oxy-coal fluidized bed combustor
Lei Pang,
Yingjuan Shao,
Wenqi Zhong,
Zheng Gong and
Hao Liu
Energy, 2020, vol. 194, issue C
Abstract:
As one of the most promising carbon capture technologies for coal-fired power plants, oxy-coal combustion has attracted wide interests during the last two decades. In comparison to atmospheric oxy-fuel combustion, pressurized oxy-fuel combustion has the potential to further reduce the energy penalties caused by the carbon capture and storage and improve the net power plant efficiency. Although many researchers have investigated the NOx emissions of atmospheric oxy-coal combustion, the NOx emission behaviors under pressurized oxy-coal combustion conditions are much less understood and further comprehensive experimental investigations with continuous fuel-feeding pressurized oxy-coal combustion systems are needed in order to fill this knowledge gap. In the present study, a series of oxy-coal combustion experiments were conducted in a 30 kWth pressurized fluidized bed combustor. The effects of combustion pressure, bed temperature and excess oxygen on the NOx emissions were investigated systematically. The experimental results have shown that an increase in combustion pressure from 0.1 MPa to 0.4 MPa leads to a significant reduction in NOx emissions. An increase in bed temperature or excess oxygen results in higher NOx emissions under the higher combustion pressure conditions, which is consistent with what is observed under the atmospheric pressure combustion condition. Besides, it is found that the promoting effect of temperature increase on NOx emissions under the higher combustion pressures is weaker than that under the atmospheric pressure.
Keywords: NOx emission; Oxy-coal combustion; Pressurized fluidized-bed; Temperature; Excess oxygen (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421932451X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:194:y:2020:i:c:s036054421932451x
DOI: 10.1016/j.energy.2019.116756
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().