Experimental and numerical investigations on the performance of a G-PV/T system comparing with A-PV/T system
Zhaomeng Li,
Jie Ji,
Weiqi Yuan,
Zhiying Song,
Xiao Ren,
Md Muin Uddin,
Kun Luo and
Xudong Zhao
Energy, 2020, vol. 194, issue C
Abstract:
PV/T systems are developed to obtain electrical & thermal energy simultaneously. Generally, in PV/T system where PV cells are laminated on absorbing plate (A-PV/T), the cells can be damaged due to high temperature, thermal stress, electrical insulation problem and absorbing plate deformation. Consequently, the reliability of PV cells limits the wide application of A-PV/T systems. Moreover, the electrical performance is affected by high cells’ temperature. To overcome these problems, proposed a new structure of a PV/T system where cells are laminated on the back of glass cover (G-PV/T) instead. Experimental and numerical investigations are performed to explore the performance of two systems. The G-PV/T shows a lower temperature and better photovoltaic performance with the daily electrical efficiency of 11.66% (which of A-PV/T is 9.74%), thermal efficiency of 28.4%, and final water temperature of 45.6 °C. Two 3D dynamic thermal/electrical models are also proposed, which shows good agreement with experimental data. The influences of various structural parameters (PV coverage ratio, thickness of absorbing plate, thickness of air gap) on both PV/T systems have been predicted and compared. Furthermore, two mechanical models are proposed to explore the thermal stress distributions across the cells as well as provide an economic analysis of two systems.
Keywords: PV/T; Reliability; Thermal stress; Parameters analyses; Electrical; Thermal and overall performance; ANSYS (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219324715
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:194:y:2020:i:c:s0360544219324715
DOI: 10.1016/j.energy.2019.116776
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().