EconPapers    
Economics at your fingertips  
 

Gas production from methane hydrates upon thermal stimulation; an analytical study employing radial coordinates

M. Roostaie and Y. Leonenko

Energy, 2020, vol. 194, issue C

Abstract: In this study, a radial analytical model for methane hydrate dissociation upon thermal stimulation in porous media considering the wellbore structure’s effect has been developed. The analytical approach is based on a similarity solution employing a moving boundary separating the dissociated and undissociated zones. Two different heat sources are considered: i) line heat-source; and ii) wellbore heat-source with a specific thickness consisting of casing, gravel, and cement. The temperature and pressure distributions, dissociation rate, and energy efficiency considering various reservoir properties and different initial and boundary conditions are investigated. Direct heat transfer from the heat source to the reservoir without considering heat conduction in the wellbore thickness causes a higher dissociation rate and gas production in the line-heat-source model compared to those of the wellbore-heat-source model. Increasing the heat-source temperature or decreasing its pressure increases gas production. However, employing them simultaneously results in greater gas production but reduces energy efficiency. The dissociation rate has direct relation with reservoir’s porosity, thermal diffusivities, and thermal conductivities, but it is not dependent on the reservoir’s permeability.

Keywords: Clathrate; Dissociation; Modeling; Thermal stimulation; Wellbore layers (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219325101
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:194:y:2020:i:c:s0360544219325101

DOI: 10.1016/j.energy.2019.116815

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544219325101