EconPapers    
Economics at your fingertips  
 

Thermodynamic analysis of a biomass-fired lab-scale power plant

Jamil Al Asfar, Ahmad AlShwawra, Nabeel Abu Shaban, Mohammad Alrbai, Bashar R. Qawasmeh, Ahmad Sakhrieh, Mohammad A. Hamdan and Omar Odeh

Energy, 2020, vol. 194, issue C

Abstract: In this study, thermodynamic analysis and environmental impact of a lab-scale biomass-fired open cycle power plant have been performed. The performance of the plant including combustion and generated power efficiencies was studied based on first and second laws of thermodynamics. The combustion temperature and mass fraction of pollutants resulted from direct burning of biomass were also estimated theoretically using a mathematical model developed by the authors. It was found that the measured temperature of combustion of biomass mixture reached 818 °C, which agrees with theoretical result. The estimated energy and exergy efficiencies of the plant were 12 and 16.4%. The heat addition process in the boiler through the burner was the major source of irreversibility in the lab-scale plant; due to non-adiabatic heat transfer in the un-insulated burner where most exergy destruction and energy loss took place. The environmental impact of biomass combustion showed insignificant contents of sulfur and nitrogen oxides pollutants, which enhances the use of biomass as alternative fuel.

Keywords: Thermodynamic analysis; Biomass; Combustion; Environmental impact; Power plant (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219325381
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:194:y:2020:i:c:s0360544219325381

DOI: 10.1016/j.energy.2019.116843

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544219325381