EconPapers    
Economics at your fingertips  
 

US natural gas consumption prediction using an improved kernel-based nonlinear extension of the Arps decline model

Hongfang Lu, Xin Ma and Mohammadamin Azimi

Energy, 2020, vol. 194, issue C

Abstract: Natural gas (NG) is a vital energy in the energy structure transition, and its consumption prediction is a significant issue in energy structure management and energy security. As the second largest energy consumer and producer in the world, the status of NG in the United States (US) energy system has been increasing since the “An America First Energy Plan” was proposed in 2017. Accurate prediction of natural gas consumption (NGC) can provide an effective reference for decision-makers, policymakers, and energy companies. This paper proposes an improved kernel-based nonlinear extension of the Arps decline model (KNEA) to forecast NGC in the US. The grey wolf optimization (GWO) algorithm is used to optimize the regularization parameter and kernel width in the KNEA model, and applies the hybrid model to the NGC datasets of different sectors (including lease and plant fuel usage, pipeline and distribution usage, residential users, commercial users, industrial users, vehicle fuels users, and power generation users) in the US. Compared with the prediction results of five benchmark models, it is shown that the GWO-KNEA model has the best performance in each dataset, and the range of mean absolute percentage error is less than 5%. By comparing the computational time and memory occupancy of the model, it can be concluded that the time and space complexity of the GWO-KNEA model is greater than that of the original KNEA model, but lower than that of other benchmark models. Moreover, this paper uses the newly proposed model to predict the NGC and consumption mix of the US from 2019 to 2025. The main conclusions are drawn: (1) NGC in the US will show a slow growth trend (the average annual growth rate is only 1.2%); (2) The proportion of NGC in power generation will increase significantly, reaching about 39% in 2025; (3) The proportion of residential, commercial and industrial NGC will decline slightly.

Keywords: United States; Natural gas consumption; Prediction; KNEA; Grey wolf optimization algorithm; Kernel method (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220300128
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:194:y:2020:i:c:s0360544220300128

DOI: 10.1016/j.energy.2020.116905

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544220300128