Application of artificial neural network for predicting the dynamic performance of a free piston Stirling engine
Wenlian Ye,
Xiaojun Wang and
Yingwen Liu
Energy, 2020, vol. 194, issue C
Abstract:
In this study, an artificial neural network model is built to predict the dynamic performance of a beta-type free piston Stirling engine. The influences of six input dynamic parameters on operating frequency, amplitude ratio and phase angle are analyzed. The operating frequency is significantly affected by the spring stiffness and the mass of the pistons. However, the relationships of the dynamic parameters are comprehensive, which are determined by multiple parameters. Then, a number of dynamic output parameters are used as training and testing data. The best results are obtained by 6-6-1, 6-6-1 and 6-10-6-1 network architectures for the operating frequency, amplitude ratio and phase angle respectively. For these network architectures, the back propagation algorithm, namely Levenberg-Marguardt is applied. Stirling engine’s dynamic performance predicted with the network model is compared with the actual values. After training, correlation coefficients (R2) values for training and testing data are close to 1. The mean relative errors of the operating frequency, amplitude ratio and phase angle are 0.85%, 2.78% and 3.19% for the training process. These results show that the artificial neural network model is an acceptable and powerful approach for predicting the dynamic performance of the beta-type free piston Stirling engine.
Keywords: Free piston stirling engine; Artificial neural network; Dynamic performance prediction (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220300190
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:194:y:2020:i:c:s0360544220300190
DOI: 10.1016/j.energy.2020.116912
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().