Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system
Liang Huaxu,
Wang Fuqiang,
Zhang Dong,
Cheng Ziming,
Zhang Chuanxin,
Lin Bo and
Xu Huijin
Energy, 2020, vol. 194, issue C
Abstract:
Nanofluid-based spectral splitting concentrating photovoltaic thermal (CPV/T) system enables photovoltaic (CPV) cells and thermal absorbers to operate at different temperatures and realizes the utilization of full-spectrum sunlight. It is important to find one kind of low cost nanofluid that can be applied to nanofluid-based spectral splitting CPV/T system. In this study, the feasibility of using cost-effective glycol-ZnO nanofluid in spectral splitting CPV/T system was experimentally verified. A two-axis sun-tracking nanofluid-based spectral splitting CPV/T system was designed and fabricated. The solar energy conversion efficiency correlation coefficient was utilized to compare the thermodynamic performance of glycol-ZnO nanofluid-based spectral splitting CPV/T system with those of water-polypyrrole and water-Ag-SiO2 nanofluid-based spectral splitting CPV/T system. The effects of ZnO nanoparticles concentration in glycol-ZnO nanofluid on thermal and electrical performances were investigated. The cost comparisons of different types of nanoparticles were also conducted. The results indicated that the correlation coefficient of glycol-ZnO nanofluid-based spectral splitting CPV/T system was 0.218 and 0.05 higher than those of water-polypyrrole and water-Ag-SiO2 nanofluid-based spectral splitting CPV/T system, respectively. The cost of ZnO nanoparticles was 0.13%, 0.08% and 0.17% of cost of Au, Ag and polypyrrole nanoparticles, respectively.
Keywords: Solar energy; CPV/T; Full spectrum; Spectral splitting; Radiative transfer; Nanofluid (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220300207
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:194:y:2020:i:c:s0360544220300207
DOI: 10.1016/j.energy.2020.116913
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().