Analytical investigation of a zeolite-NaY-water adsorption heat and cold storage and its integration into a steam power process
Kristina Geilfuß and
Belal Dawoud
Energy, 2020, vol. 195, issue C
Abstract:
Stabilizing the effects of greenhouse gas emissions on the atmosphere is a key step towards solving the global climate change problems. Storage technologies play an essential role in compensating the discrepancy between surplus energy and peak times. Sorption processes, in particular, offer an environment friendly way for almost loss-free heat (of adsorption or absorption) and cold storage. This work is dedicated first to analytically investigate the potential of applying NaY-Water/Zeolite as a working pair for heat and cold storage upon utilizing high temperature heat. It turned out that, the mass of the adsorber heat exchanger increases the useful specific heat stored from 229 kWh/tzeolite for the ideal storage to 538 kWh/tzeolite or even higher depending on the thermal capacity of the adsorber heat exchanger (AdsHX). Contrary to that trend, COP will decrease with increasing the thermal capacity of the AdsHX. Sensible heat losses between charging and discharging phases do have a negative effect on both stored heating capacity and COP.
Keywords: Adsorption; Heat storage; Cold storage; Zeolite NaY-Water; Hybrid steam power cum adsorption storage process (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220300840
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:195:y:2020:i:c:s0360544220300840
DOI: 10.1016/j.energy.2020.116977
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().