Development of functionalities for improved storage modelling in OSeMOSYS
Andrea Palombelli,
Francesco Gardumi,
MatteoVincenzo Rocco,
Mark Howells and
Emanuela Colombo
Energy, 2020, vol. 195, issue C
Abstract:
Integrated systems modelling has provided insights on pathways for the sustainable use of energy, land and water resources. Among the existing modelling tools, some have been widely used to engage policy makers, due to their open source and basic structure. Yet, in the attempt of simplifying the representation of integrated systems, essential features significantly influencing the dynamics between systems may have been left aside. This study proposes an improved formulation of the Open Source Energy Modelling System (OSeMOSYS), for a better representation of energy and resource storage processes. In particular, the focus of this work is the storage losses introduction for both dams for hydropower generation and batteries for electricity storage. The modifications were applied to a case study representing key features of both a developed and developing country. The results highlight that, with low additional computational effort, a much more accurate representation of the storage technologies can be achieved. Despite the introduction of losses, renewable energy technologies tend to have a high penetration in the future energy mix thanks to storage applications that remedy their unpredictability and seasonality.
Keywords: Energy system modelling; Energy storage systems; OSeMOSYS; Sustainable development; Renewable energy (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220301328
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:195:y:2020:i:c:s0360544220301328
DOI: 10.1016/j.energy.2020.117025
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().