Potential of hybrid powertrains in a variable compression ratio downsized turbocharged VVA Spark Ignition engine
Antonio García,
Javier Monsalve-Serrano,
Santiago Martínez-Boggio and
Karsten Wittek
Energy, 2020, vol. 195, issue C
Abstract:
After the diesel emissions scandal, also known as Dieselgate, Direct Injection Spark-Ignited (DISI) internal combustion engines (ICE) appears as the most promising alternative to mitigate the harmful tailpipe emissions from passenger cars. In spite of that, the current ICE technologies are not enough to achieve the fuel consumption/CO2 emissions targets set by the new transportation legislation (4.1 Lgasoline/100 km, 95 gCO2/km for 2021). In this complex scenario, the electrification of the powertrain using high efficiency electric motors and battery package together with sophisticated DISI engines appears as potential solution to meet these requirements. The aim of this work is to study the fuel consumption and pollutant emissions in transient conditions from a passenger car equipped with a variable compression ratio (VCR) DISI engine and electrified powertrain technologies. The vehicle behavior was simulated by means of a 0D GT-Suite model fed by experimental results obtained in an engine test bench. Mild hybrid electric vehicle (MHEV) and full hybrid electric vehicle (FHEV) architectures using a VCR DISI engine were studied. Moreover, an optimization methodology is presented to select the best vehicle configuration in terms of hardware and control strategies by means of a design of experiments (DoE). The results show that VCR allows a fuel improvement of 3% with respect to the conventional DISI fixed CR along the worldwide harmonized light vehicles test cycles (WLTC). The benefits found when combining the VCR technology with hybrid powertrains are even higher. In this sense, the fuel improvements were higher as the electrification levels increased, with 8% for MHEV-VCR and around 20% for FHEV-VCR. In terms of emissions, the two clear benefits with FHEV-VCR were the reduction of particle number (PN) and unburned hydrocarbons (HC) of around 60% and 15%, respectively, as compared to the conventional DISI.
Keywords: Hybrid powertrain; Downsized combustion engines; Variable compression ratio; Emissions regulations; Driving cycles (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220301468
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:195:y:2020:i:c:s0360544220301468
DOI: 10.1016/j.energy.2020.117039
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().