Regression analysis for energy demand projection: An application to TIMES-Basilicata and TIMES-Italy energy models
Senatro Di Leo,
Pietro Caramuta,
Paola Curci and
Carmelina Cosmi
Energy, 2020, vol. 196, issue C
Abstract:
A reliable energy supply is fundamental to ensure energy security and support the mitigation of climate change by promoting the use of renewable sources and reducing carbon emissions. Energy system analysis provides a sound methodology to assess energy needs, allowing to investigate the energy system behavior and to individuate the optimal energy-technology configurations for the achievement of strategic energy and environmental policy targets. In this framework, the estimation of future trends of exogenous variables such as energy demand has a fundamental importance to obtain reliable and effective solutions, contributing remarkably to the accuracy of models’ input data. This study illustrates an application of regression analysis to predict energy demand trends in end use sectors. The proposed procedure is applied to characterize statistically the relationships between population and gross domestic product (independent variables) and energy demands of Residential, Transport and Commercial in order to determine the energy demand trends over a long-term horizon. The effectiveness of linear and nonlinear regression models for energy demand forecasting has been validated by classical statistical tests. Energy demand projections have been tested as input data of the bottom-up TIMES model in two applications (the TIMES-Basilicata and TIMES-Italy models) confirming the validity of the forecasting approach.
Keywords: Energy demand forecast; Regression analysis; TIMES model; MATLAB (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220301651
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:196:y:2020:i:c:s0360544220301651
DOI: 10.1016/j.energy.2020.117058
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().