Wind power forecasting using attention-based gated recurrent unit network
Zhewen Niu,
Zeyuan Yu,
Wenhu Tang,
Qinghua Wu and
Marek Reformat
Energy, 2020, vol. 196, issue C
Abstract:
Wind power forecasting (WPF) plays an increasingly essential role in power system operations. So far, most forecasting models have focused on a single-step-ahead WPF, and the obtained results are insufficient for planning and operations of the power system due to the intermittent and fluctuated nature of wind. At the same time, most of the current multi-step-ahead WPF models neglect the correlation between different forecasting tasks. In this paper, we propose a novel sequence-to-sequence model using the Attention-based Gated Recurrent Unit (AGRU) that improves accuracy of forecasting processes. It embeds the task of correlating different forecasting steps by hidden activations of GRU blocks. In addition, an attention mechanism is designed as a feature selection method to identify the most important input variables. To validate the effectiveness of the proposed AGRU model, three different case studies focused on forecasting accuracy, computational efficiency, and feature selection abilities are carried out. Their performances are compared with various wind power forecasting benchmarks.
Keywords: Wind power forecasting; Recurrent neural network; Feature selection; Attention mechanism; Deep learning (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (75)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220301882
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:196:y:2020:i:c:s0360544220301882
DOI: 10.1016/j.energy.2020.117081
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().