EconPapers    
Economics at your fingertips  
 

Energy saving in the process of bioethanol production from renewable paper mill sludge

Tareq Salameh, Muhammad Tawalbeh, Mohammad Al-Shannag, Motasem Saidan, Khalid Bani Melhem and Malek Alkasrawi

Energy, 2020, vol. 196, issue C

Abstract: Paper mill sludge (PMS) can be efficiently utilized to produce fuels and chemicals. However, wastewater is usually generated during the de-ashing step of the PMS for fibrous materials recovery. Per process requirements, the wastewater stream must be treated which results in an increase in the overall process production cost. Therefore, this research aims at reusing the wastewater produced during the de-ashing step as a substitute for freshwater addition during the conversion of PMS into ethanol. The advantages of this approach include reducing the amount of wastewater produced and enhancing the overall efficiency of the process. It will contribute to the circular economy of zero waste discharges. The results showed that 30% of the process wastewater can be recycled without affecting the enzymatic hydrolysis and ethanol fermentation. Hence, the amount of wastewater that needs to be treated is reduced by 30% resulting in a cost reduction of 22.5%. The results also showed that wastewater recycling minimized the energy demands in the distillation and evaporation units by 1206 kJ/kg. The energy reduction is due to the increase of metals and total soluble solids in the broth stream after fermentation. This process configuration enhanced the process economy, saved energy and managed waste streams.

Keywords: Process stream recycling; Paper mill sludge; Ethanol; Energy reduction; Circular economy (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220301924
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:196:y:2020:i:c:s0360544220301924

DOI: 10.1016/j.energy.2020.117085

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:196:y:2020:i:c:s0360544220301924