A hybrid energy storage system using compressed air and hydrogen as the energy carrier
Łukasz Bartela
Energy, 2020, vol. 196, issue C
Abstract:
In this paper, an innovative concept of an energy storage system that combines the idea of energy storage, through the use of compressed air, and the idea of energy storage, through the use of hydrogen (with its further conversion to synthetic natural gas), has been proposed. The thermal integration of two sub-systems allows for efficient storage of large amounts of energy based on the use of pressure tanks with limited volumes. A thermodynamic assessment of the integrated hybrid system was carried out. For the assumed operation parameters, an energy storage efficiency value of 38.15% was obtained, which means the technology is competitive with intensively developed pure hydrogen energy storage technologies. The results obtained for the hybrid system were compared to the results obtained for three reference systems, each of which uses hydrogen generators. The first is a typical Power-to-H2-to-Power system, which integrates hydrogen generators with a fuel cell system. The other two additionally use a compressed air energy storage installation. In the first case the compressed air energy storage system consists of a diabatic system. In the second case the compressed air energy storage system is adiabatic. The article has discussed the disadvantages and advantages of all the analyzed systems.
Keywords: Energy storage; Compressed air energy storage; Electrolysis; Methanation; Hybridization (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422030195X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:196:y:2020:i:c:s036054422030195x
DOI: 10.1016/j.energy.2020.117088
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().