Robust design optimization (RDO) of thermoelectric generator system using non-dominated sorting genetic algorithm II (NSGA-II)
Ungki Lee,
Sudong Park and
Ikjin Lee
Energy, 2020, vol. 196, issue C
Abstract:
The thermoelectric generator (TEG) is a promising technology for the exhaust heat recovery of automobiles and TEG optimization has been widely studied. However, previous TEG optimization studies did not consider variations in the TEG net power output caused by uncertain parameters in the TEG system. This paper introduces a robust design optimization (RDO) that maximizes the mean of the performance function while minimizing its variance, leading to an optimum design that is less sensitive to uncertainties in TEG systems. A surrogate model is used to reduce the computational cost and the non-dominated sorting genetic algorithm II (NSGA-II) is used to find a compromise solution. The standard deviation of the TEG net power output of the deterministic optimum design (93.51W) verifies that the uncertainty of TEG systems significantly affects the variation of the TEG net power output, indicating that the uncertainty should be considered in TEG optimization problems. The compromise solution guarantees stable and high TEG net power output compared to the deterministic optimum design stemming from existing TEG optimization studies. The results of a global sensitivity analysis using the Sobol index indicate that the inlet temperature of the hot fluid has the greatest impact on the TEG net power output.
Keywords: Thermoelectric generator (TEG); Robust design optimization (RDO); Uncertain parameter; Non-dominated sorting genetic algorithm II; Surrogate model; Global sensitivity analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220301973
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:196:y:2020:i:c:s0360544220301973
DOI: 10.1016/j.energy.2020.117090
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().