Resilience of standalone hybrid renewable energy systems: The role of storage capacity
Shoki Kosai and
Jordi Cravioto
Energy, 2020, vol. 196, issue C
Abstract:
Evaluating the resilience of a power supply system after a sudden disturbance is essential in standalone hybrid renewable systems. Reliability assessments have strongly focused on the static condition during supply, opposite to the dynamic response to sudden disturbances, which is less studied in reliability literature. This study proposes a novel approach to analyze dynamic-response resilience from a sudden disturbance, focusing on the role of storage capacity of the standalone hybrid renewable system. Using a computer-based simulation, the magnitude, duration and instant of battery failure in the system is quantified and two indices to quantitatively measure resilience based on the three parameters are developed. Using these indices, it is discovered that the system resilience non-linearly declined with increasing trouble rate and trouble duration. The same tendency was observed for ten battery capacities analyzed. Also, larger storage capacity provided higher resilience as a general rule. However, battery capacities of 11,500, 12,500 and 14,500 Wh seem to equal or even slightly outperform the immediate larger type at the most critical duration and magnitude of failure. The developed algorithm presents one approach to clarify dynamic performance of the system and can be implemented in any system scale.
Keywords: Zero energy building; Sustainable rural living; Energy security; Redundancy; Vulnerability; Data envelopment analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220302401
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:196:y:2020:i:c:s0360544220302401
DOI: 10.1016/j.energy.2020.117133
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().