Impact of Off-design operation on the effectiveness of a low-temperature compressed air energy storage system
Ahmad Arabkoohsar,
Hamid Reza Rahrabi,
Ali Sulaiman Alsagri and
Abdulrahman A. Alrobaian
Energy, 2020, vol. 197, issue C
Abstract:
There is no doubt that the determination of a smart charging-discharging pattern can be very effective in increasing the cost-effectiveness and overall energy efficiency of an energy storage system. For finding the optimal operation strategy of the energy storage unit of a renewable power plant, the electricity spot price, the forecast data of energy availability, and the regulations of the local power market should all be taken into account. In addition to these economic considerations, the effect of deviation from the nominal load (partial-load operation) on the performance of the energy storage system is a critical parameter that directly affects the optimal operation pattern of the system in real-life energy markets. In this study, the effects of partial-load work of a low-temperature compressed air energy storage system on its overall performance are investigated thermodynamically employing real performance maps of all the components of the system. The results of the study indicate that the energy storage system needs to operate around nominal design conditions if it is expected to perform efficiently. The round-trip efficiency of the unit approaches 68% at a nominal load while it offers the low efficiencies of 52% and 28% if working at 50% and 10% loads, respectively.
Keywords: Low-temperature compressed air energy storage; Off-design operation; Power ramps; Performance destruction index; Performance maps (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220302838
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:197:y:2020:i:c:s0360544220302838
DOI: 10.1016/j.energy.2020.117176
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().