The feasibility of solar thermal-air source heat pump water heaters in renewable energy shortage regions
Meng Liu,
Yueer He,
Huifu Zhang,
Heng Su and
Ziwei Zhang
Energy, 2020, vol. 197, issue C
Abstract:
Despite the extensive literature on solar-assisted heat pump systems, including optimizations of systems configurations and operation strategies, there are few works of literature on the potential of applying solar thermal-air source heat pump water heaters (SA-WH) in solar shortage regions and none that compares alternative system improvements for the same boundary conditions and with the same level of comfort to the end-user. This work examines the feasibility of the SA-WH in solar shortage regions from a performance perspective and compares its performance to the solar water heater (SWH) and the air-source heat pump water heater (ASHP-WH). Experimental studies were carried out from March 22, 2014 to April 21, 2014, which covered spring-summer transition seasons of these particular areas. The parameter η was proposed and a reference ηbase of 2.4 was defined to rate the performance of these three systems. The results showed nearly 80% of working conditions of the SA-WH had a η which was higher than 2.4, wherein 70% were above 3. Furthermore, this study presents a regression model verified by measured data to predict the potential performance of the SA-WH in renewable energy shortage regions. This prediction model provides an optimal method of fully applying solar energy for the domestic hot water (DHW) and even heating by targeting better system performance. Then, three solar energy shortage cites of China were used as cases to illustrate the use of the prediction model. To meet the DHW demand in transitional seasons of these regions, the air-source heat pump of the SA-WH is suggested to be switched on 1 h before using when the average ambient temperature is below 20 °C; and be switched on at the hour with the highest temperature of the day when the average ambient temperature is above 20 °C and operate 1 h.
Keywords: Solar-assisted system; Experimental research; Regression model; Potential assessment; Control strategies (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220302966
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:197:y:2020:i:c:s0360544220302966
DOI: 10.1016/j.energy.2020.117189
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().