Comparative analysis of iterative approaches for incorporating learning-by-doing into the energy system models
Hansung Kim,
Hwarang Lee,
Yoonmo Koo and
Dong Gu Choi
Energy, 2020, vol. 197, issue C
Abstract:
Appropriate treatment of technological changes has been an important issue in the field of energy system modeling. Although some mixed integer programming-based formulations have been introduced to incorporate learning-by-doing endogenously, they require high computational effort. Therefore, many practitioners have not considered the technological changes endogenously. Recently, some studies have suggested iterative approaches to incorporate learning-by-doing indirectly. This study provides a comparative analysis among the most famous mixed integer programming-based formulation and iterative approaches. We also propose a revised iterative approach that can overcome the cons partially. Lastly, as a numerical study, we apply the previously suggested methods and our proposed method to analyze two renewable energy policies, carbon taxation and subsidy, in the Korean electricity sector. This numerical study illustrates the results of our comparative analysis. The iterative approaches can be approximately 5–23 times more computationally efficient compared to the revised formulation. In addition, the required total carbon tax or total subsidy in scenarios using different iterative approaches are 10%–50% lower than no learning scenarios. The practical implications of this study are the correct approaches that would aid in determining the accurate futuristic scenarios. This will lead to the timely and effective implementation of relevant policies.
Keywords: Learning-by-doing; Iterative approach; Energy system model; Bottom-up; Policy analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422030308X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:197:y:2020:i:c:s036054422030308x
DOI: 10.1016/j.energy.2020.117201
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().