Dynamic optimization of multi-retrofit building envelope for enhanced energy performance with a case study in hot Indian climate
Pranaynil Saikia,
Marmik Pancholi,
Divyanshu Sood and
Dibakar Rakshit
Energy, 2020, vol. 197, issue C
Abstract:
When multiple thermal retrofits are to be installed in a building envelope for improving its energy performance, several questions arise such as “what should be the thickness of retrofits and where they should be placed within the wall/roof”, “which retrofit should be installed towards the exterior and which one should be installed towards the interior of the envelope”. Such judgements are made in contemporary studies by comparing limited predefined configurations where either the thickness or the location of retrofit assumes only a few discrete values within the envelope. The novel approach proposed in this study utilizes spatial discretization of structural layers in a composite envelope for two fold benefit. A new version of Genetic Algorithm (GA) is developed for this purpose by modifying its key operational stages. The GA is implemented in a practical scenario to optimally configure a multi-retrofit envelope (carrying phase change material and thermal insulator) of a common residential building in hot climate of India. Analysis of a single housing unit demonstrates that up to 33.5% of heat gain reduction and 9.2 kWh/day of electricity saving are achievable with improved envelope design.
Keywords: Building envelope; Heat gain; Phase change material; Insulator; Genetic algorithm (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220303704
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:197:y:2020:i:c:s0360544220303704
DOI: 10.1016/j.energy.2020.117263
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().