EconPapers    
Economics at your fingertips  
 

Design and performance evaluation of an innovative solar-nuclear complementarity power system using the S–CO2 Brayton cycle

Gang Wang, Cheng Wang, Zeshao Chen and Peng Hu

Energy, 2020, vol. 197, issue C

Abstract: In this paper, in order to deepen the grid penetration of solar energy, an innovative hybrid solar-nuclear complementarity power (SNCP) system using the supercritical CO2 Brayton cycle is proposed. A solar tower thermal system and a small modular lead-cooled fast reactor (LFR) are coupled in this system. The KCl–MgCl2 salt is chosen as both the heat transfer and energy storage materials for the solar energy block. The simulation model of the SNCP system is established by using the Ebsilon Professional code. Design point performance of the SNCP system is evaluated. The results demonstrate that the SNCP system has an incremental electric power of 77.6 MW compared with the standalone small LFR. The ratio of the incremental electric power to the total net electric power can be 31.1%. Moreover, the performance investigation of the SNCP system under the varying solar irradiance condition is conducted. The results reveal that with the solar irradiance increased, the net electric power and the ratio of the incremental electric power to the net electric power both increase. The SNCP system can operate stably under the pre-set modes and the operation behavior simulation results are in agreement with the pre-set operation strategy.

Keywords: Solar-nuclear complementarity power plant; CSP; Small modular LFR; Supercritical CO2 brayton cycle; Thermodynamic analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220303893
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:197:y:2020:i:c:s0360544220303893

DOI: 10.1016/j.energy.2020.117282

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:197:y:2020:i:c:s0360544220303893