Multi-objective optimization and selection of hybrid combined cooling, heating and power systems considering operational flexibility
Jiangjiang Wang,
Yi Liu,
Fukang Ren and
Shuaikang Lu
Energy, 2020, vol. 197, issue C
Abstract:
This paper proposes a multi-objective optimization model integrated with operational flexibility to optimize a hybrid combined cooling, heating and power (CCHP) system. The operational flexibility of the hybrid CCHP system is proposed and expressed by the combined indicators to show the capacity to resist performance degradation because of externally variable conditions to increase energy saving and cost saving, to reduce carbon dioxide emissions, and to enhance renewability, the ability to adjust heat and electricity, and the grid integration level. A Pareto frontier of solutions considering a larger operational flexibility with less performance degradation is obtained in genetic algorithm. The use of a multi-criteria decision making method combined with an entropy weighting method is employed to quantitatively evaluate the composite sustainability index of the Pareto schemes and choose the optimal hybrid CCHP option with the best integrated performance. The results of a case study that considers operational flexibility and optimization indicated that the potential adjustable ability was increased by 438.9%, and the grid integration level and net interaction with the grid were decreased by 3.6%. However, the increase in flexibility reduces the energetic, economic and environmental benefits achieved by the CCHP system by 5.1%, 56.4% and 3.0%, respectively.
Keywords: multi-objective optimization; Combined cooling heating and power (CCHP) system; Multi-criteria decision making; Operational flexibility; Hybrid power plant (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220304205
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:197:y:2020:i:c:s0360544220304205
DOI: 10.1016/j.energy.2020.117313
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().