EconPapers    
Economics at your fingertips  
 

Modeling and dynamic simulation of thermal energy storage system for concentrating solar power plant

Qiang Yu, Xiaolei Li, Zhifeng Wang and Qiangqiang Zhang

Energy, 2020, vol. 198, issue C

Abstract: Thermal energy storage system in concentrating solar power plants can guarantee sustainable and stable electricity output in case of highly unstable solar irradiation conditions. In this paper, the lumped parameter method is used to develop the models of different thermal energy storage systems. In order to improve the reliability as well as the prediction accuracy of developed models, the charging/discharging process is firstly simulated, and then the dynamic characteristics of thermal energy storage systems are fully tested by imposing 15% step disturbance of mass flow. The results show that the charging/discharging characteristics of the three different thermal energy storage systems are almost the same, which have little to do with the storage mediums used in the systems. Besides, for the representative 1MWe solar parabolic trough power plant, a 15% step up disturbance of oil mass flow will result in a small increase (1.8% and 1.3% respectively) on the outlet temperature of oil and molten salt. On the other side, a 15% step down disturbance of oil mass flow will lead a 2.7% and 2.2% decrease on the outlet temperature of oil and molten salt respectively. In order to verify the validity of the proposed models, the simulation results are compared with both the design points and representative experimental data from the 1MWe solar parabolic trough power plant. The results show that the maximum relative error is not more than 1% when comparing with the design points and the maximum relative error is not more than 12% when comparing with the representative experimental data. Conclusions of this paper are good references for system design, control and commissioning of concentrating solar power plants.

Keywords: Concentrating solar power; Thermal energy storage; Lumped parameter method; Step disturbance; Dynamic characteristics (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220302905
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:198:y:2020:i:c:s0360544220302905

DOI: 10.1016/j.energy.2020.117183

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:198:y:2020:i:c:s0360544220302905