EconPapers    
Economics at your fingertips  
 

PCM integrated glass in glass tube solar collector for low and medium temperature applications: Thermodynamic & techno-economic approach

K. Chopra, V.V. Tyagi, A.K. Pandey, Ravi Kumar Sharma and Ahmet Sari

Energy, 2020, vol. 198, issue C

Abstract: In present work, techno-economic and thermodynamic analysis of an ETC with/without PCM has been undertaken. The results approved that for all selected flow rates, ETC/S obtained higher energy and exergy efficiencies in comparison to the ETC/WS design. The maximum attained value of average daily energy efficiency for ETC/S and ETC/WS was 78.36% and 54.10% respectively with a high flow rate (24 L/h). Also, at this flow rate, ETC/S and ETC/WS attained peak value of average daily exergy efficiency of 23.15% and 20.06% respectively. The average daily energy efficiency of ETC/S was found to be 53.46%, 30.87%, and 44.85% higher in comparison to ETC/WS for low (8 L/h), medium (16 L/h) and high (24 L/h) flow rate respectively. Hence, the integration of SA (stearic acid) as energy storage material with HP-ETC not only stored the thermal energy but also enhanced the system performance.

Keywords: Heat pipe; Evacuated tube collector; Stearic acid; Energy efficiency; Exergy efficiency; Techno-economic analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220303455
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:198:y:2020:i:c:s0360544220303455

DOI: 10.1016/j.energy.2020.117238

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:198:y:2020:i:c:s0360544220303455