Investigation of binary, ternary and quaternary mixtures across solution heat exchanger used in absorption refrigeration and process modifications to improve cycle performance
Sambhaji T. Kadam,
Dimitris Gkouletsos,
Ibrahim Hassan,
Mohammad Azizur Rahman,
Alexios-Spyridon Kyriakides,
Athanasios I. Papadopoulos and
Panos Seferlis
Energy, 2020, vol. 198, issue C
Abstract:
One area of vital importance in the field of absorption refrigeration (ABR) is the search of alternative combinations of refrigerant/absorbent pairs that can enhance its performance relatively to the widely used H2O-NH3 or H2O-LiBr. In this work, three binary (H2O-LiBr, H2O-LiCl, H2O-LiI), three ternary (H2O-LiBr + LiI, H2O-LiBr + C2H6O2, H2O-LiBr + LiCl) and four quaternary (H2O-LiBr + LiCl + ZnCl2, H2O-LiBr + ZnCl2+CaBr2, H2O-LiBr + ZnBr2+LiCl, H2O-LiBr + LiI + C2H6O2) mixtures of refrigerant/absorbent are tested to investigate heat transfer and pressure drop characteristics across the solution heat exchanger used in ABR systems. Subsequently, seven different single effect absorption cooling flowsheet configurations are explored to assess the potential for exploitation of the generated results at the cycle level. The effects of the concentrations of the absorbent in the mixture of refrigerant/absorbent on heat transfer and pressure drop characteristics are addressed. As a result, H2O-LiI, H2O-LiBr + LiI and H2O-LiBr + ZnCl2+CaBr2 shows higher heat transfer coefficient and lower pressure drop among the tested binary, ternary and quaternary mixtures respectively. Furthermore, it is concluded that with increase in mass fraction of the absorbent in the mixture, the heat transfer coefficient is decreased. A process configuration with part of the refrigerant mixed with the strong solution through an ejector, prior to the solution heat exchanger, is found to exhibit highest coefficient of performance.
Keywords: Absorption refrigeration; Heat transfer coefficient; Solution heat exchanger; Binary mixture; Ternary mixture; Quaternary mixture (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220303613
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:198:y:2020:i:c:s0360544220303613
DOI: 10.1016/j.energy.2020.117254
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().