EconPapers    
Economics at your fingertips  
 

The electrical analogy model of the gas pressure reducing and metering station

Danko Vidović, Elis Sutlović and Matislav Majstrović

Energy, 2020, vol. 198, issue C

Abstract: To overcome balancing challenges in the power system, when existing balancing capacities are not sufficient, one of the most used solutions is the installation of new gas-fired power plants, and, nowadays, power-to-gas facilities. Consequently, the power and natural gas systems are getting so linked and operationally interdependent that they must be simultaneously analyzed in an integrated way. To do so, it is useful to have a robust iterative-free simulation model based on the electrical analogy. Hence, the electrical equivalent models of an ideal as well of a real natural gas pressure reducing and metering stations (GPRMS) in steady-state are presented in this paper. For verification, two case studies were conducted. In the first case study, a comparison was made between the results of 24 simulations performed by the presented models and well-known commercial software for natural gas network analyses – SIMONE. The results indicate a very good agreement. In the second case study, 11 measurements from the real GPRMS have been used to determine the most crucial parameter in a real gas pressure reducing process. Both case studies have confirmed a very high precision of the presented real GPRMS model, and the correctness of the modeling approach applied.

Keywords: Natural gas system; Power system; Multi-energy system; Gas pressure reducing and metering station; Electrical analogy; Steady state analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220304497
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:198:y:2020:i:c:s0360544220304497

DOI: 10.1016/j.energy.2020.117342

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:198:y:2020:i:c:s0360544220304497