EconPapers    
Economics at your fingertips  
 

Covalent organic frameworks (COF)/CNT nanocomposite for high performance and wide operating temperature lithium–sulfur batteries

Jianyi Wang, Weiwei Qin, Xixi Zhu and Yongqiang Teng

Energy, 2020, vol. 199, issue C

Abstract: Lithium-sulfur (Li–S) batteries as the most promising rechargeable batteries are still facing severe challenges, such as fast capacity fade, poor cycling stability, and low sulfur utilization, mainly due to the dissolution/migration of soluble reaction intermediates during cycling. Here, a novel functionalized separator has been designed to trap the dissolved polysulfide by the facile strategy of functional coated separator which combining covalent organic frameworks with interlude Carbon Nanotubes network (COF-CNT-separator). Notably, it acts as an ionic sieve in Li–S batteries and a house for polysulfide, which selectively sieves Li+ ions and successfully confine the polysulfide within the cathode region. The battery exhibited a high reversible capacity of 1068 mAh g−1 at 1 A g−1 after the first cycle and capacity of 621 mAh g−1 after 500 cycles (sulfur content of 80% in cathode). When its high and low temperature performance were investigated, it finds that Li–S battery is suitable for a wide range of temperatures, from −10 to 50 °C, delivering a high utilization rate of sulfur, an excellent rate and cycle performance, and outstanding life cycle. Therefore, this facile strategy of combining separator with special network is an effective candidate for achieving high performance Li–S batteries.

Keywords: Lithium-sulfur batteries; Covalent organic framework; Separator modified; Temperature performance; High energy density (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220304795
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:199:y:2020:i:c:s0360544220304795

DOI: 10.1016/j.energy.2020.117372

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:199:y:2020:i:c:s0360544220304795