CFD modelling of small scale ORC scroll expanders using variable wall thicknesses
Simon Emhardt,
Guohong Tian,
Panpan Song,
John Chew and
Mingshan Wei
Energy, 2020, vol. 199, issue C
Abstract:
The built-in volume ratio of variable wall thickness scroll expanders can be increased without increasing the number of scroll turns and the expander size in contrast to constant wall thickness expanders. CFD models for these novel scroll-type designs are presented in this research paper. The validation, verification and the findings had proven consistency with the theory of small scale ORC scroll expanders. The performance analysis indicates that the optimum performance point was reached at a pressure ratio of 3.5. The decrease of radial clearance from 200 μm to 75 μm had a significant effect on the isentropic efficiency and the specific power output, with the isentropic efficiency significantly increasing from 31.9% up to 53.9%. Based on the second-law analysis, it is found that exergy of 336.5W (75 μm) and 864.2W (200 μm) were destroyed during the expansion processes. Furthermore, characteristic pressure imbalances were observed in the expansion chambers. The studies also reveal that the large-scale vortices, generated during the suction process, were completely dissipated in the expansion chambers at a crank angle of 600°. Analysis of the pressure-volume diagram shows that variable wall thickness scroll expanders with built-in volume ratios above 4.5 could fully expand the working fluid to the defined outlet pressure.
Keywords: Unsteady 3D CFD concept; Variable wall thickness; Scroll expander; ORC system; Pressure trace analysis; Energy dissipation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220305065
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:199:y:2020:i:c:s0360544220305065
DOI: 10.1016/j.energy.2020.117399
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().