Experimental study on the dynamics, quality and impacts of using variable-speed pumps in buildings for frequency regulation of smart power grids
Huilong Wang,
Shengwei Wang and
Kui Shan
Energy, 2020, vol. 199, issue C
Abstract:
The increased generation of renewable power is challenging in terms of the power balance and reliability of power grids due to the intermittent nature of renewable sources. Heating, ventilation, and air-conditioning (HVAC) systems in buildings, at demand side, are promising candidates for providing frequency regulation. In this study, we systematically assessed the use of variable-speed pumps in HVAC systems for frequency regulation. The dynamic characteristics of the pump were investigated. The results show that the power of the pump can response to the frequency change rapidly (returning stable within 1s), while the response of flow rate is slightly slower. A frequency regulation control strategy is proposed and implemented on a test rig. From the viewpoint of power grids, the experimental results show that the pump can provide high-quality frequency regulation (performance scores of 0.989 and 0.968). From the viewpoint of buildings, the experimental results indicate that the fluctuation magnitude of the air-handling unit outlet air temperature increases (from 3.3 K to 7.1 K) with increasing automatic generation control (AGC) signal frequency, whereas the fluctuation magnitude of the indoor air temperature increases to some extent and then decreases when the frequency of the AGC signal is above a certain level.
Keywords: Building demand response; Grid-responsive building; Ancillary services; Smart grid (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220305132
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:199:y:2020:i:c:s0360544220305132
DOI: 10.1016/j.energy.2020.117406
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().