Carbon dioxide hydrate separation from Integrated Gasification Combined Cycle (IGCC) syngas by a novel hydrate heat-mass coupling method
Zhaoyang Chen,
Jie Fang,
Chungang Xu,
Zhiming Xia,
Kefeng Yan and
Xiaosen Li
Energy, 2020, vol. 199, issue C
Abstract:
A novel hydrate heat-mass coupling separation (HHMCS) method was studied to reduce the energy consumption of CO2 hydrate separation from Integrated Gasification Combined Cycle (IGCC) syngas in this work. Tetra-n-butyl ammonium bromide (TBAB) is used as a hydrate promoter and pure TBAB hydrate is used as a phase change heat-mass coupling additive. The heat-mass coupling effect, CO2 separation characteristics and influence factors were studied by continuous separation experiments in a bubble column reactor. Compared to conventional gas hydrate separation method, the HHMCS process exhibits a higher energy-saving potential, less temperature and TBAB concentration fluctuation due to pure TBAB hydrate phase change. Increase inlet gas rate, the accumulated gas consumption decreased slightly, but the average gas consumption rate increased. Increase operating pressure and decrease gas phase volume increased the average gas consumption rate and CO2 separation efficiency. After continuous separation of simulated syngas, the average CO2 concentration in H2-rich gas decreased to 17.45 mol%, and that in CO2-rich gas increased to 86.44 mol%. The CO2 split fraction and separation factor reached 0.80 and 8.15, respectively. The work provided a new idea to integrally utilize the phase change enthalpy, improve the operating flexibility and heat transfer in large device.
Keywords: CO2 hydrate separation; Bubbling reaction; IGCC; Heat-mass coupling; TBAB hydrate (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220305272
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:199:y:2020:i:c:s0360544220305272
DOI: 10.1016/j.energy.2020.117420
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().