EconPapers    
Economics at your fingertips  
 

Optimization of food waste hydrothermal liquefaction by a two-step process in association with a double analysis

Wei-Hsin Chen, Yu-Ying Lin, Hsuan-Cheng Liu and Saeid Baroutian

Energy, 2020, vol. 199, issue C

Abstract: Bio-oil production from food waste, consisting of pineapple peel, banana peel, and watermelon peel, is investigated by a two-step process, namely, an alkaline pretreatment process with K2CO3 (10 wt% of the dry feedstock) followed by a hydrothermal liquefaction (HTL) process. Meanwhile, the Taguchi method is introduced to maximize the energy yield of the two-step process. Four parameters in the Taguchi approach are taken into account; they are the pretreatment temperature and time as well as the liquefaction temperature and holding time. The optimal combination of the four parameters gives the highest energy yield of 56.55%. The higher heating value of the bio-oil is 25.12 MJ/kg, yielding a 45.88% improvement when compared to the HHV of the dry-basis feedstock. A double analysis, namely, the Taguchi approach and analysis of variance (ANOVA), suggests that the liquefaction temperature plays the most influential role in the energy yield, and a strong linear relationship (R2 ≈ 0.99) is exhibited between the effect in the Taguchi approach and the F value in ANOVA. The experiments of thermogravimetric analysis coupled with Fourier-transform infrared spectroscopy indicate that the composition of the bio-oil from the optimal operation is more uniform.

Keywords: Alkaline pretreatment; Hydrothermal liquefaction (HTL); Double analysis; Taguchi method; Analysis of variance (ANOVA); Bio-oil and energy yields (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220305454
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:199:y:2020:i:c:s0360544220305454

DOI: 10.1016/j.energy.2020.117438

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:199:y:2020:i:c:s0360544220305454