EconPapers    
Economics at your fingertips  
 

Energy characteristics of mixed-flow pump under different tip clearances based on entropy production analysis

Leilei Ji, Wei Li, Weidong Shi, Hao Chang and Zhenyu Yang

Energy, 2020, vol. 199, issue C

Abstract: In order to investigate the effect of impeller tip clearance on the internal flow fields and the hydraulic losses in mixed-flow pump, the entropy production method with computational fluid dynamics (CFD) is employed to analyze the energy losses in a low specified number mixed-flow pump with guide vane. The results show that the size of tip clearance is closely related to the external characteristic performance of mixed-flow pump, and the effect of tip clearance on the flow fields of mixed-flow pump is obvious at design flow rate condition. When the tip clearance raises from 0.2 mm to 1.1 mm, the head drop loss coefficient increases 1.62 times in the impeller. As the tip clearance augments from 0.2 mm to the 1.1 mm, the total entropy production in impeller increases by 142%. Whereas, the total entropy production in guide vane descends by 21.8% slightly. It indicates that the increase of tip leakage flow (TLF) may increase the energy losses in impeller but the hydraulic losses in guide vane is suppressed to some extent as a result of an existence of TLF. Therefore, for the sake of improving the energy performance of mixed-flow pump, it is necessary to take the scale of blade tip clearance into account and consider optimizing the hydraulic design structure of guide vanes comprehensively to match the tip clearance.

Keywords: Mixed-flow pump; Entropy production; Tip leakage flow; Hydraulic losses; Flow separation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (36)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220305545
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:199:y:2020:i:c:s0360544220305545

DOI: 10.1016/j.energy.2020.117447

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:199:y:2020:i:c:s0360544220305545