EconPapers    
Economics at your fingertips  
 

Large eddy simulation of plasma-assisted ignition and combustion in a coaxial jet combustor

Ming Dong, Jinglong Cui, Ming Jia, Yan Shang and Sufen Li

Energy, 2020, vol. 199, issue C

Abstract: To study the effect of plasma O3 on the combustion-supporting process for a coaxial jet combustor, large eddy simulation (LES)-partially stirred reactor (PaSR) simulation of a methane/air turbulent diffusion combustion was carried out based on OpenFOAM open-source software platform. The prediction of the turbulent diffusion flame was verified, and the results are in good agreement with the experiment data. Then the effect of air discharge product (i.e., O3) on the methane ignition and combustion process was investigated using plasma-assisted combustion model by 341 steps detailed reaction mechanism. The results show that the addition of O3 can increase the speed of flame propagation and accelerate the ignition process of methane combustion. It is also found that the vortex structure with O3 is more continuous in the recirculation zone, and the flame recirculation zone with O3 is closer to the inlet. The effect of O3 on enhanced combustion is more obvious in the low-temperature region, while the axial-velocity ratio with O3 is considerably improved in the high-temperature region. Besides, the plasma O3 will reduce the fluctuation of vx′vx’, especially at the peak point, which will tend to stabilize the recirculation zone.

Keywords: Coaxial jet combustor; Plasma O3; LES; Ignition; Enhanced combustion (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220305703
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:199:y:2020:i:c:s0360544220305703

DOI: 10.1016/j.energy.2020.117463

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:199:y:2020:i:c:s0360544220305703