EconPapers    
Economics at your fingertips  
 

Modeling and parametric study of molten salt receiver of concentrating solar power tower plant

Qiang Yu, Peng Fu, Yihui Yang, Jiafei Qiao, Zhifeng Wang and Qiangqiang Zhang

Energy, 2020, vol. 200, issue C

Abstract: Central receiver is a key part of concentrating solar power tower plants, as it is not only responsible for the highly effective absorption of incident energy from the heliostat field, but also for efficient energy conversion from light to heat. Its performance will directly affect the system efficiency and generating capacity of the whole plant. In this paper, a comprehensive model of molten salt receiver, which uses the mult-section lumped parameter method, is clearly developed based on a molten salt solar power tower plant. In order to improve the reliability as well as the prediction accuracy of the developed model, the dynamic characteristics of the molten salt receiver are fully investigated by a step disturbance of external parameters. Besides, in order to improve the design level of molten salt receiver, the influence of key parameters on the performance of receiver system is also extensively studied. The results show that the incident solar flux, wind speed and absorptivity of heat-absorbing tube can greatly affect the performance of molten salt receiver system. In order to verify the validity of proposed model, the simulation results are compared with the published experimental data, and the results show the model has a high accuracy. Conclusions of this paper are good references for the design, control and commissioning of molten salt receiver systems.

Keywords: Concentrating solar power; Molten salt central receiver; Lumped parameter method; Step disturbance (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220306125
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:200:y:2020:i:c:s0360544220306125

DOI: 10.1016/j.energy.2020.117505

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:200:y:2020:i:c:s0360544220306125