Design optimization of oil pan thermoelectric generator to recover waste heat from internal combustion engines
Mutabe Aljaghtham and
Emrah Celik
Energy, 2020, vol. 200, issue C
Abstract:
Nearly 75% of fuel energy is rejected to the environment and ultimately becomes waste heat in motor vehicles. To recover some of this waste heat and enhance fuel efficiency, thermoelectric energy generators (TEGs) possess high potential. We investigated the feasibility of utilizing TEGs in terms of oil pans to recover waste heat generated in internal combustion engines. Hot oil at the top surface of TEG and air cooling at the bottom create a high thermal gradient for the thermoelectric conversion. An extensive multi-physics simulation framework was introduced to accurately simulate conversion of heat into electricity taking into account thermoelectricity, joule heating, heat conduction and turbulent air cooling. To maximize the thermoelectric power, dimensions and the total number of thermoelectric modules were optimized under different oil pan geometries and driving conditions. Our simulations show that the maximum power density of 5.77 kW m−2 is achieved with multi-step oil pan geometry under a 76 °C temperature difference between the hot and cold sides. This power density surpassed those reported for the previous, conventional (exhaust and radiator) thermoelectric applications and indicated that harvesting thermal energy from combustion engines using oil pans is a feasible energy recovery methodology to enhance fuel efficiency in automotive vehicles.
Keywords: Thermoelectric generator; Simulation; Energy harvesting; IC Engine; Fuel efficiency; Oil pan (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422030654X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:200:y:2020:i:c:s036054422030654x
DOI: 10.1016/j.energy.2020.117547
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().