Performance evaluation of air-blown IGCC polygeneration plants using chemical looping hydrogen generation and methanol synthesis loop
Bin Shi,
Fang Wen and
Wei Wu
Energy, 2020, vol. 200, issue C
Abstract:
Three chemical processing units by the integrated intermittent chemical-looping air separation (IICLAS), the chemical-looping hydrogen generation (CLHG), and the methanol synthesis loop (MSL) are integrated to retrofit the integrated gasification combined cycle (IGCC) system configuration. Four designs are presented and their performances are evaluated according to net efficiency, energy storage ratio (ESR), water saving ratio (WSR), and carbon emission rate (CER). An oxy-fuel IGCC power plant using IICLAS (Design 1) achieves 45.19% of net (thermal) efficiency. An oxygen-blown IGCC polygeneration plant with an integration of IICLAS and CLHG (Design 2) produces electricity and pure hydrogen simultaneously, and its net efficiency is up to 54.04%. An air-blown IGCC polygeneration (power/H2) plant without Brayton cycle and IICLAS (Design 3) ensures its net efficiency with 59.43%. An air-blown IGCC polygeneration plant with an integration of CLHG and MSL (Design 4) produces electricity, hydrogen, and methanol simultaneously, and its net efficiency could be as high as 60.42%. In addition, it is verified that Design 4 not only ensures the higher ESR due to hydrogen and methanol as storable fuels, but also it has an inherently lower environmental impact due to the lower CER, the higher WSR, and very low NOx emissions.
Keywords: IGCC; Polygeneration; Chemical looping hydrogen production; Methanol synthesis; Heat integration (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422030671X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:200:y:2020:i:c:s036054422030671x
DOI: 10.1016/j.energy.2020.117564
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().