Enhancement of energy efficiency by exhaust gas recirculation with oxygen-rich combustion in a natural gas combined cycle with a carbon capture process
Woo-Sung Lee,
Jun-Ho Kang,
Jae-Cheol Lee and
Chang-Ha Lee
Energy, 2020, vol. 200, issue C
Abstract:
To enhance the energy efficiency in a natural gas combined cycle (NGCC) integrated with a chemical solvent-based carbon capture process (CCP), application of exhaust gas recirculation (EGR) with oxygen-rich (oxygen + air) combustion was studied. As the first step, performance of the CCP and its impact on the efficiency of the NGCC were evaluated by validated rigorous models. Net power generation of an NGCC with a CCP was 533 MW at 90% capture rate. Total capture cost was approximately 46.5 USD/ton of CO2. When the EGR, known to improve the performance, was applied, enhancement of the net power generation was limited by 1% (538 MW) because utilization of excessive EGR can be a problem for stable operation of the gas turbine in NGCC. To further improve the EGR, therefore, feasibility of oxygen-rich (oxygen + air) combustion was investigated. The net power generation increased up to 555 MW, which improved about 4% than the original case. In addition, the results indicated that the unconditional mixing of oxygen can rather reduce the net power generation, and optimal composition of the oxygen-rich mixture gas is important. This study exhibited potential ways to improve the efficiency of an NGCC with a CCP.
Keywords: Natural gas combined cycle (NGCC); Carbon capture process (CCP); Capture cost; Exhaust gas recirculation (EGR); Oxygen-rich combustion (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220306939
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:200:y:2020:i:c:s0360544220306939
DOI: 10.1016/j.energy.2020.117586
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().