EconPapers    
Economics at your fingertips  
 

An efficient hour-ahead electrical load forecasting method based on innovative features

Amir Rafati, Mahmood Joorabian and Elaheh Mashhour

Energy, 2020, vol. 201, issue C

Abstract: Deregulation of electric power market and aggregation of renewable resources raise the need for new hour-ahead load forecasting models. This paper proposes a new hybrid data-driven method for hour-ahead electrical load forecasting based on innovative features that represents the nonlinear and dynamic characteristics of electrical load. These features predict hourly load changes and improve the accuracy and performance of STLF. These innovative features first construct the pool of features along with historical load variables. Then, a feature selection method called RReliefF is used for choosing most relevant features and finally, a multi-layer perceptron neural network is employed as a forecasting engine—due to its advantages such as self-organization, fault tolerance and ease of integration in existing technologies. The efficiency of the proposed model is evaluated through various comparative experiments and compared with benchmark models using the three years’ real energy market data from New England ISO by four evaluation criteria. The results demonstrate the superiority of proposed method in forecasting performance for the period of analysis including 12 test months as well as special days.

Keywords: Hour-ahead load forecasting; Feature selection; Neural networks; Deregulated energy system (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220306186
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:201:y:2020:i:c:s0360544220306186

DOI: 10.1016/j.energy.2020.117511

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:201:y:2020:i:c:s0360544220306186