Determination of influential parameters for heat consumption in district heating systems using machine learning
Danica Maljkovic and
Bojana Dalbelo Basic
Energy, 2020, vol. 201, issue C
Abstract:
District heating systems are an important part of the future smart energy systems and are seen in the European Union as a vehicle for reaching energy efficiency targets. Integrating different energy systems requires high prediction accuracy for all energy sub-systems. Within this paper a data analysis was made with the goal of identifying a high accuracy prediction model and ranking the most influential parameters on heat consumption of final consumers in district heating systems. The data set consisted of the actual billing data comprising of 260 buildings and it was additionally supplemented by the behavioural data obtained from interviews and questionnaires conducted on the demonstration building in Zagreb, Croatia. The authors choose regression trees, random forest and regression support vector machines as algorithms for testing prediction accuracy and evaluating the variable importance ranking on the data set. The best performing algorithm was random forest, resulting with high prediction accuracy and the root mean squared error of prediction of specific annual heat consumption below 1 kWh/m2. Furthermore, all analysed machine learning algorithms ranked importance variables for both technical and behavioural parameters, giving the indication what parameters should be influenced in order to reach specific targets, such as energy savings.
Keywords: District heating; Consumption prediction accuracy; Forecasting; Machine learning; Variable importance; Energy efficiency (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220306927
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:201:y:2020:i:c:s0360544220306927
DOI: 10.1016/j.energy.2020.117585
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().