EconPapers    
Economics at your fingertips  
 

Peak lift-to-drag ratio enhancement of the DU12W262 airfoil by passive flow control and its impact on horizontal and vertical axis wind turbines

Sercan Acarer

Energy, 2020, vol. 201, issue C

Abstract: Recent studies have revealed that passive leading-edge slots on the pressure side has the potential to increase both the peak and overall CL/CD of airfoils and may possess an advantage over active methods. This work pursues application of such novel slots to the modern DU12W262 airfoil with a flexible slot-shape parametrization coupled with an optimizer to allow other slot concepts as well (suction side and trailing edge slots). Experimentally validated Computational Fluid Dynamics (CFD) simulations are employed for this purpose. It is shown that 16% peak CL/CD improvement and overall α-CL/CD rise are observed without any penalty in stall range. Implications of these are demonstrated on Horizontal- and Vertical-Axis Wind Turbines (HAWT and VAWT) by CFD. It is shown that, HAWT peak Cp of increases by 3.2%. Alternative BEM simulations predict this as high as 7.5%. For the VAWT, the peak Cp remains unchanged, however high tip-speed-ratio (λ > 3, low wind speed) Cp increases between 3.5 and 9.6% throughout the operational range. This may directly reflect into VAWT urban operation. In summary, the concept is highly successful in improving peak and overall CL/CD of a modern airfoil, and this yields to significant enhancements in both HAWTs and VAWTs.

Keywords: Passive flow control; Slot; Airfoil; HAWT; VAWT; Wind turbine (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220307660
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:201:y:2020:i:c:s0360544220307660

DOI: 10.1016/j.energy.2020.117659

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:201:y:2020:i:c:s0360544220307660