EconPapers    
Economics at your fingertips  
 

Demonstration of Mg(NO3)2·6H2O-based composite phase change material for practical-scale medium-low temperature thermal energy storage

B.C. Zhao, T.X. Li, F. He, J.C. Gao and R.Z. Wang

Energy, 2020, vol. 201, issue C

Abstract: This work focuses on the industrialization-oriented investigation of a latent heat storage using a magnesium nitrate hydrate-based composite phase change material. Three aspects of studies are included: (i) characterizations on the thermal-physical properties of the composite, (ii) explorations on the supercooling stability of the composite within continuous thermal cycles, and (iii) evaluations on the thermal performance of a pilot-scale storage unit. The results indicate that the freshly-prepared composite has a fusion heat of 147.9 ± 0.5 J g−1, a storage capacity of 253.5 ± 0.9 J g−1 within 70–110 °C. The PCM presents no significant degradation after 100 thermal cycles. The material performs a better supercooling stability than pure magnesium nitrate hexahydrate. The designed latent heat storage unit can achieve stable charges and discharges with an effective heat storage density of 33.5 ± 2.6 kWh m−3, a thermal efficiency of 88.1 ± 9.6% and a thermal loss of around 10% during a daily operation. In addition, the storage unit performs a higher latent heat release concentration as discharging rate drops and its effective storage capacity within 80–85 °C is over 4.3 times of water storage. The

Keywords: Latent heat storage; Salt hydrate; Supercooling stability; Thermal performance evaluation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220308185
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:201:y:2020:i:c:s0360544220308185

DOI: 10.1016/j.energy.2020.117711

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:201:y:2020:i:c:s0360544220308185